An Exhaustive DPLL Algorithm for Model Counting
نویسندگان
چکیده
منابع مشابه
Extracting a DPLL Algorithm
We formalize a completeness proof for the DPLL proof system and extract a DPLL SAT solver from it. When applied to a propositional formula in conjunctive normal form the program produces either a satisfying assignment or a DPLL derivation which shows that it is unsatisfiable. We use non-computational quantifiers to remove redundant computational content from the extracted program and improve it...
متن کاملan application of equilibrium model for crude oil tanker ships insurance futures in iran
با توجه به تحریم های بین المملی علیه صنعت بیمه ایران امکان استفاده از بازارهای بین المملی بیمه ای برای نفتکش های ایرانی وجود ندارد. از طرفی از آنجایی که یکی از نوآوری های اخیر استفاده از بازارهای مالی به منظور ریسک های فاجعه آمیز می باشد. از اینرو در این پایان نامه سعی شده است با استفاده از این نوآوری ها با طراحی اوراق اختیارات راهی نو جهت بیمه گردن نفت کش های ایرانی ارائه نمود. از آنجایی که بر...
A DPLL Algorithm for Solving DQBF
Dependency Quantified Boolean Formulas (DQBF) comprise the set of propositional formulas which can be formulated by adding Henkin quantifiers to Boolean logic. We are not aware of any published attempt in solving this class of formulas in practice. However with DQBF being NEXPTIME-complete, efficient ways of solving it would have many practical applications. In this paper we describe a DPLL-sty...
متن کاملan appropriate model for exchange rate predictability in iran: comparing potential forecastability
nowadays in trade and economic issues, prediction is proposed as the most important branch of science. existence of effective variables, caused various sectors of the economic and business executives to prefer having mechanisms which can be used in their decisions. in recent years, several advances have led to various challenges in the science of forecasting. economical managers in various fi...
An approximation algorithm for counting contingency tables
We present a randomized approximation algorithm for counting contingency tables, m × n non-negative integer matrices with given row sums R = (r1, . . . , rm) and column sums C = (c1, . . . , cn). We define smooth margins (R,C) in terms of the typical table and prove that for such margins the algorithm has quasi-polynomial NO(lnN) complexity, where N = r1 + · · · + rm = c1 + · · · + cn. Various ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Artificial Intelligence Research
سال: 2018
ISSN: 1076-9757
DOI: 10.1613/jair.1.11201